Rhodium-Catalyzed Asymmetric Construction of Quaternary Carbon Stereocenters: Ligand-Dependent Regiocontrol in the 1,4-Addition to Substituted Maleimides

Ryo Shintani, Wei-Liang Duan, and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Received March 1, 2006; E-mail: thayashi@kuchem.kyoto-u.ac.jp

Enantioselective construction of quaternary carbon stereocenters is an important, but challenging, objective in organic chemistry. ${ }^{1}$ 1,4 -Addition of carbon nucleophiles to β, β-disubstituted α, β unsaturated compounds is potentially a useful strategy for efficient assembly of this type of molecular skeleton. It is, therefore, of high value to achieve such a transformation in a catalytic asymmetric fashion. ${ }^{2}$ Some successful examples in this regard have begun to appear in the copper-catalyzed asymmetric 1,4 -addition of dialkylzinc reagents ${ }^{3}$ and trialkylaluminum reagents, ${ }^{4}$ and Carretero recently reported a rhodium-catalyzed 1,4 -addition of alkenylboronic acids to α, β-unsaturated pyridyl sulfones for the construction of quaternary carbon stereocenters. ${ }^{5}$ In this communication, we describe the development of a rhodium-catalyzed asymmetric 1,4addition of arylboronic acids to 3 -substituted maleimides (1), ${ }^{6}$ furnishing 3,3-disubstituted succinimides (2) in high regio- and enantioselectivity (eq 1).

We initially conducted a reaction of 1-benzyl-3-ethylmaleimide (1a) with $\mathrm{PhB}(\mathrm{OH})_{2}$ in the presence of $2.5 \mathrm{~mol} \%$ rhodium catalyst bearing chiral diene ${ }^{7-9}(R, R)$-Bn-bod*, ${ }^{7,8}$ obtaining 1-benzyl-3-ethyl-4-phenylsuccinimide (3a) as the major product along with its regioisomer $\mathbf{2 a}(\mathbf{2 a} / \mathbf{3 a}=22 / 78$; Table 1 , entry 1$)$. Although the trans/cis ratio of 3a was not very good (1.6/1), the enantioselectivity was high in both diastereomers (trans, 82% ee; cis, 97% ee). The employment of (R, R)-Ph-bod*7 as a ligand gave higher regioselectivity toward $\mathbf{3 a}(\mathbf{2 a} / \mathbf{3 a}=15 / 85$; entry 2$)$ with somewhat better enantioselectivity (trans, 83% ee; cis, $>99 \%$ ee). In contrast, the use of bisphosphine ligands reversed the regioselectivity of 1,4addition, preferentially forming compound $\mathbf{2 a} .{ }^{10}$ Thus, in the presence of (R)-binap, ${ }^{11,12}$ the products were obtained in 99% combined yield with $\mathbf{2 a} / \mathbf{3 a}=85 / 15$, and the enantioselectivity of 2a was as high as 96% ee (entry 3). By changing the ligand to $(R)-\mathrm{H}_{8}$-binap, ${ }^{13}$ the regioselectivity toward 2a was further enhanced with maintaining the high enantiomeric excess ($87 / 13,97 \%$ ee; entry 4). A similar trend was observed with substrate $\mathbf{1 b}(R=M e$; entries 5-8), and the absolute configurations of trans- $\mathbf{3} \mathbf{b}$ and cis- $\mathbf{3 b}$ in entry 5 were determined to be $(4 R)$ by converting them to trans 4 and cis-4, respectively (eq 2). ${ }^{14}$

(R, R)-Bn-bod*
(R, R)-Ph-bod*
(R)-binap

5628 ■ J. AM. CHEM. SOC. 2006, 128, 5628-5629

Table 1. Rhodium-Catalyzed Asymmetric 1,4-Addition of Phenylboronic Acid to Substituted Maleimides 1: Ligand Effect

 1a: $R=E t$ 1b: $R=M e$		3.0 equiv				
entry	1	ligand	yield $(\%)^{a}$	$\begin{gathered} 2 / 3^{b} \\ (\text { trans } / \text { cis })^{b} \end{gathered}$	$\begin{gathered} \text { ee of } 2 \\ (\%) \end{gathered}$	ee of 3 (\%) (trans, cis)
1	1a	(R, R)-Bn-bod*	93	22/78 (1.6/1)	73	82, 97
2	1a	(R, R)-Ph-bod*	94	15/85 (1/2.3)	97	83, >99
3	1a	(R)-binap	99	85/15 (2.0/1)	96	68, 96
4	1a	(R)- H_{8}-binap	98	87/13 (2.3/1)	97	-19, 96
5	1b	(R, R)-Bn-bod*	94	20/80 (2.1/1)	84	82, 93
6	1b	(R, R)-Ph-bod*	94	11/89 (1/1.4)	93	79, 99
7	1b	(R)-binap	98	75/25 (2.1/1)	95	0, 96
8	1b	(R)- H_{8}-binap	98	81/19 (2.8/1)	96	$-10,94$

${ }^{a}$ Combined yield of 2 and $3 .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR of the crude material.

Table 2. Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Substituted Maleimides 1: Scope

 1a: $\mathrm{R}=\mathrm{Et}$ 1b: $R=M e$ 1c: $\mathrm{R}=i-\mathrm{Pr}$	$\mathrm{ArB}(\mathrm{OH})_{2}$ 3.0 equiv	$\xrightarrow{\substack{\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2} \\(2.5 \mathrm{~mol} \% \mathrm{Rh}) \\ \text { (R)- } \mathrm{H}_{8} \text {-binap }(\mathrm{L} / \mathrm{Rh}=1.1)}}$			
			yield		ee of 2
entry	1	Ar	(\%) ${ }^{\text {a }}$	$2 / 3$ ratio $^{\text {b }}$	(\%)
1	1a	Ph	98	87/13	97
2	1a	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	95	92/8	97
3	1a	2-naphthyl	90	86/14	96
4	1a	$2-\mathrm{MeC} 6 \mathrm{H}_{4}$	82	>98/2	90
5	1b	Ph	98	81/19	96
6	1b	$4-\mathrm{MeOC} 6 \mathrm{H}_{4}$	95	84/16	90
7	1b	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	95	86/14	96
8^{c}	1c	Ph	90	97/3	98
$9{ }^{\text {c }}$	1c	4-MeC ${ }_{6} \mathrm{H}_{4}$	85	97/3	98

${ }^{a}$ Combined yield of 2 and $\mathbf{3} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR of the crude material. ${ }^{c}$ The reaction was conducted for 5 h with $5 \mathrm{~mol} \%$ of catalyst and 5.0 equiv of $\operatorname{ArB}(\mathrm{OH})_{2}$.

We have determined that the scope of this asymmetric construction of quaternary carbon stereocenters catalyzed by $\mathrm{Rh} /(R)-\mathrm{H}_{8}{ }^{-}$ binap is fairly broad (Table 2). Both substrates $\mathbf{1 a}$ and $\mathbf{1 b}$ can react with various arylboronic acids with high regioselectivity (81/1992/8; entries $1-3$ and 5-7), furnishing desired 1,4-adducts 2 with excellent enantioselectivity ($90-97 \%$ ee). It is worth noting that an o-tolyl group can be installed in 1a with almost perfect regioselectivity (>98/2, 90% ee; entry 4). Furthermore, substrate 1c ($\mathrm{R}=i$ - Pr) undergoes the 1,4 -addition with very high regio- and

Figure 1. Proposed stereochemical pathway for the asymmetric 1,4-addition to a 3 -substituted maleimide catalyzed by $\mathrm{Rh} /(R)-\mathrm{H}_{8}$-binap.

Figure 2. Proposed stereochemical pathway for the asymmetric 1,4-addition to a 3 -substituted maleimide catalyzed by $\mathrm{Rh} /(R, R)$-Ph-bod*.
enantioselectivity ($97 / 3,98 \%$ ee; entries 8 and 9). The absolute configuration of 1,4 -adduct $\mathbf{2 b - O M e}$ in entry 6 was determined to be (R) by reducing it to pyrrolidine 5 (eq 3). ${ }^{14}$

We have also examined the reaction with quinone-based substrates. For example, 2-methyl-1,4-naphthoquinone (6) undergoes the 1,4 -addition of $\mathrm{PhB}(\mathrm{OH})_{2}$ in the presence of $2.5 \mathrm{~mol} \%$ of $\mathrm{Rh} /(R)$-binap, furnishing product 7 in 70% yield with $>99 \%$ ee (eq 4).

The observed regioselectivity in these 1,4 -additions to 3 -substituted maleimides can be explained as follows. In the presence of a rhodium catalyst bearing $(R)-\mathrm{H}_{8}$-binap (Figure 1), due to the severe steric repulsion between the substituent R on maleimide and the phenyl group sticking out from the phosphorus atom of the ligand, maleimide preferentially coordinates to rhodium, keeping its R group away from the ligand phenyl group, leading to the selective formation of $\mathbf{2}$.

In contrast, in the presence of (R, R)-Ph-bod* (Figure 2), the upward orientation of the phenyl substituent on the diene ligand significantly reduces the steric repulsion with the R group on maleimide. As a result, the steric hindrance between an aryl group on the rhodium and the R group on maleimide becomes the dominant factor, leading to selective insertion of maleimide toward the formation of 3 .

With regard to the absolute configurations, to avoid the unfavorable steric interaction between the imide moiety of maleimide and
the phenyl group on the ligand, $\mathrm{Rh} /(R)$ - H_{8}-binap provides (R) isomers and $\mathrm{Rh} /(R, R)$-Ph-bod* provides (4R)-isomers, respectively. ${ }^{15}$

In summary, we have developed a rhodium-catalyzed asymmetric 1,4 -addition of arylboronic acids to 3 -substituted maleimides. The regioselectivity has been controlled by the choice of ligand (dienes or bisphosphines), and 1,4 -adducts with a quaternary stereocenter can be obtained with high regio- and enantioselectivity by the use of (R) - H_{8}-binap.

Acknowledgment. Support has been provided in part by a Grant-in-Aid for Scientific Research, the Ministry of Education, Culture, Sports, Science and Technology, Japan (21 COE on Kyoto University Alliance for Chemistry).

Supporting Information Available: Experimental procedures and compound characterization data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388. (b) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591. (c) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105. (d) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363.
(2) (a) Krause, N.; Hoffmann-Röder, A. Synthesis 2001, 171. (b) Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002; p 224. (c) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 8033.
(3) (a) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 4584. (b) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988. (c) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2774.
(4) (a) d'Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005, 44, 1376. (b) Fuchs, N.; d'Augustin, M.; Humam, M.; Alexakis, A.; Taras, R.; Gladiali, S. Tetrahedron: Asymmetry 2005, 16, 3143.
(5) Mauleón, P.; Carretero, J. C. Chem. Commun. 2005, 4961.
(6) For examples of catalytic asymmetric 1,4 -addition to maleimides, see: (a) Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T. Org. Lett. 2004, 6, 3425. (b) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611.
(7) (a) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (b) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503. (c) Shintani, R.; Kimura, T.; Hayashi, T. Chem. Commun. 2005, 3213. (d) Shintani, R.; Okamoto, K.; Hayashi, T. Chem. Lett. 2005, 1294. (e) Shintani, R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757. (f) Nishimura, T.; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979.
(8) (a) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54. (b) Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 3909. (c) Hayashi, T.; Tokunaga, N.; Okamoto, K.; Shintani, R. Chem. Lett. 2005, 1480. (d) Chen, F.-X.; Kina, A.; Hayashi, T. Org. Lett. 2006, 8, 341.
(9) (a) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508. (b) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307. (c) Otomaru, Y.; Kina, A.; Shintani, R.; Hayashi, T. Tetrahedron: Asymmetry 2005, 16, 1673. (d) Kina, A.; Ueyama, K.; Hayashi, T. Org. Lett. 2005, 7, 5889. (e) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 1628. (f) Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873. (g) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850. (h) Paquin, J.-F.; Stephenson, C. R. J.; Defieber, C.; Carreira, E. M. Org. Lett. 2005, 7, 3821. (i) Läng, F.; Breher, F.; Stein, D.; Grützmacher, H. Organometallics 2005, 24, 2997. (j) Grundl, M. A.; Kennedy-Smith, J. J.; Trauner, D. Organometallics 2005, 24, 2831.
(10) For examples of a ligand-dependent regiocontrol in transition-metalcatalyzed processes, see: (a) Tsukamoto, H.; Ueno, T.; Kondo, Y. J. Am. Chem. Soc. 2006, 128, 1406. (b) Miller, K. M.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 15342.
(11) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.
(12) (a) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579. (b) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052.
(13) Zhang, X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Takaya, H. Tetrahedron Lett. 1991, 32, 7283.
(14) See Supporting Information for details. Compounds trans-4 and cis-4: (a) Andrés, C.; Duque-Soladana, J. P.; Pedrosa, R. J. Org. Chem. 1999, 64, 4282. Compound 5: (b) Arzel, P.; Freida, V.; Weber, P.; Fadel, A. Tetrahedron: Asymmetry 1999, 10, 3877.
(15) Currently, we do not fully understand the exact factors that determine the ratio of trans and cis in the formation of 1,4-adducts 3 .
JA061430D

